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ABSTRACT

A simple proof by functional equations is given for
Ramanujan's 1"’1 sum, Ramanujan's sum is a useful
extension of Jacobi's triple product formula, and has
recently become important in the treatment of certain
orthogonal polynomials defined by basic hypergeometric

series.
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A SIMPLE PROOF OF RAMANUJAN'S SUMMATION OF THE Ili},

(1) (2)

George E. Andrews and Richard Askey

In [5; p. 222, eq. (12.12,2)) G. H. Hardy alludes to Ramanujan s
. remarkable formula with many parameters.'':

n
©  (ajq) x :
(1) Yy = (3D
(b.q)n 1"1'b

ns=-%

(b/a,q) (q:q) (a/ax:q) (ax;q),,
(biq) (b/ax:q) (a/a:q) (x:q)  ’

"

®
where |§-| < |xl <i, lgl <1 (a;q), = 1T (1-aq"), and
(@;a) = (3;)/(aq":a)y ). ;

There are four published proofs of this result ([1],[2],[4] and [7]).
Those in [1], [2] and [7] rely on somewhat tricky rearrangement of

series and on the g-analog of Gauss's summation [10; p. 97, eq. (3.3.2.5)]

- :
o (a:q)n(b:q)n(fg) (c/aiq) ,(c/biq)

nso (@) (@) " (ciq) (c/abig)

(2)

where Icl < min(l, |ab|). The other proof uses the g-analogue of the

binomial series [10; p. 92, eq. (3.2.2.11)]:

» ,q) (at;q)
(3 2’ .q) " (ua), el <1, lal <1,

but it is far from simple. Since Ramanujan's summation (1) has recently

become important in the treatment of certain orthogonal polynomials defined
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by basic hypergeometric series {3], it has become worthwhile to present an

almost trivial proof of (1). Another very simple proof has been found by

M. Ismail [6].

Proof of (1). We begin by noting that for 4l <1, by = (a;q.x)

1"1'b
Is an analytic function of b inside |b| < min (1,!ax!), since
b -n
= (a;q)xn r(l-n) .(l-q)x
el T e :
n=0 D n:l(l-T)...(l-—)
q q
Furthermore,
(5) U T gy 21 B,
n n+l
o 2, yx I, b oy (3, %
= &3 a X (l - _) F i b
n=-% (b:q) q n=-© (= ;q)
q "'n+l
e o b a:q,x
Hence
; g @ e
(6) f(bq) - x "(1-b)f(b) = a ) —
neew  (bAiQ)
18 (@@ d-bg" - X" o 3
s w88 ) = -ab (l-b) f(b) + ab  f ’
a R (bq:q)n (1-b) f(b) (bq)

and so
a -1 -1
(1- g)f(bQ) = (l-b}(x ~ - ab ') f(b) ,

or

(1<)

(7) f(b) =

— f(bq) .
(1-b)(I - =)

If we iterate (7) n-l times we find that

"

i




(b/a ;q) X
- ’ f(bq ) ,
(b.q)n(b/ax.q)rl

(8) f(b)

and since f(b) is analytic in the neighborhood of 0 given by Ib| < |axl,

we obtain in the limit as n—»» ,
(b/a; q)  £(0)
(b;q) ,(b/ax;q)

(9) f(b)

Now we observe from (4) and (3) that

n
x (aiq) x (ax, q),
10 flq) = =
4o 0=k (%30,

This allows us to evaluate f(0) by setting b =q in (9) :

(@i, ( 2k @)y £9)
(a/aiaq),

(11) f(0)

(@a), ( 75 i), (axiq)
(a/a;q) , (X;q) g
Finally we may utilize (1l) to eliminate f(0) from (9) :

(b/a:q), (@:q), (a/ax;q)  (axiq),
(biq),, (b/ax;q), (a/a,q), (x:@),

" TSN

a2 (o %= 1) =

as desired.

L TN T

Note that Jacobi's triple product identity follows directly from (1)

if we replace a by a-l, X by 2a and thenset a = b = 0:

0
an Y 0"V L (g (a/za ), |

Nn=-00 1




(a;q)
I. ]J. Schoenberg has pointed out an interesting property of (b—'q;ﬂ
i

which follows from Ramanujan's sum. A sequence apy n= % WPEARES
is said to be totally positive if all subdeterminants of the doublely

infinite matrix A = (ai-j)—w<1,j<ao are nonnegative. Schoenberg [9]

proved that a sequence an is totally positive if the bilateral generating
0

function f(z) = anzn has the representation

‘w
L
- 00

-1
i b ecz+dz-l _ﬁ_ (1+ aiz)(l + 6iz )
t=1 (1 - ﬁiz)(l - yiz'l)

: o0

in the interior of an annulus centered at the origin.
If a <b<0 in (l)then the generating function has the form (14)

and so

- (aia) : ﬁ_ 1 - ba*™)1 - ad¥)
n (b:q)n k=0 (1 - aqk+n)(1 oy bqk)

is a totally positive sequence for a < b: 0, 0 <q <1. Schoenberg [9]
proved this when b = 0. For an extended discussion of totally positive

sequences see Karlin [ 8].
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